Detection of Collapsed Buidings Due to Eathquake in Urban Areas

نویسندگان

  • M. Sakamoto
  • O. Uchida
  • T. Doihara
چکیده

As the initial investigation on disaster occurrence, it is very important for reducing economical losses to obtain timely observation of damages especially in metropolis. In such situation, information on changed area obtained from aerial photo analysis is promising. In this study, we propose a change detection approach objected for metropolis right after the disaster with automatic image processing of aerial photos. We introduce two different types of approaches. The first method is for the case of no available orientation information. In this case change detection is performed by registration of images, which are taken before and after the disaster. We define this approach as 2D image matching method. The second approach aims at acquiring not only 2D changes’ distribution but also quantitative 3D shifts by matching between digital terrain data and images before and after the disaster. We call this approach 3D image matching method. In the first step of 2D image matching method, initial registration is executed for minimizing the matching process between images before and after disaster. This process is performed automatically by detecting appropriate conjugate points which candidates are derived from images independently with the improved relaxation method and a mathematical model, which is constrained by a photogrammetric principle (relative orientation). In the next step, image rectification is executed. Owing to these processes yparallax in images is eliminated and matching process is restricted in x-axis. In the case of relative orientation failure, formation of imaginary stereo model by perspective projection is executed as a substitutive means. For detecting changed area, the adaptive nonlinear mapping is applied. This method is based on model of self-organization in neural network. The one of the image pair is mapped to the other by iterative local deformation. Changed areas are detected as inconsistent matching in the mapping process. On the other hand, the concept of 3D image matching method is to compare not only changed images but also the additional terrain information created before disaster. In this case, it is assumed that stereoscopic aerial photos and exterior orientation are available. Former digital terrain data such as DSM or digital maps is transformed based on exterior orientation parameters and 3D matching is carried out. Changed areas are detected as inconsistent texture or height anomaly. Evaluation tests were performed with actual aerial photos that were taken right after of the earthquake and several years later respectively. To evaluate the ability of change detection, the results are compared with those by human interpretation. For quantitative estimation, ROC (Receiver Operating Characteristic) chart was applied, which plots sequential probability of detection against probability of false alarm. As a result, 80 % of right change detection was achieved when false alarms were about 30 % in 2D image matching method and 18 % in 3D image matching method respectively. * Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Housing the Urban Poor in Nigeria through Community Participation Using Lessons from Nairobi Kenya

Migration of people to urban areas from the rural areas usually comes with its challenges interms of infrastructural requirement and housing to cater for growing population. One of the challenge for the urbandwellers in Nigeria is that of adequate housing. The inability of the government to meet this demand has seen thepeople concerned seeking alternative solutions to housing need. The resultin...

متن کامل

Introducing An Efficient Set of High Spatial Resolution Images of Urban Areas to Evaluate Building Detection Algorithms

The present work aims to introduce an efficient set of high spatial resolution (HSR) images in order to more fairly evaluate building detection algorithms. The introduced images are chosen from two recent HSR sensors (QuickBird and GeoEye-1) and based on several challenges of urban areas encountered in building detection such as diversity in building density, building dissociation, building sha...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Combining Lidar, Insar, Sar and Sar-simulation for Change Detection Applications in Cloud-prone Urban Areas

Cloud-prone urban environments are very difficult areas for remote sensing using traditional sensors operating with short wavelength signals in the visible or infrared domains. Due to their all-weather capability, SAR systems are a suitable alternative for time-critical change-detection applications in these areas. However, the inherent side-looking sensor principle of SAR is disadvantageous fo...

متن کامل

Investigation of the effects of Covid-19 pandemic on UHI in urban, industrial and green spaces of Tehran

Investigation of the effects of Covid-19 pandemic on UHI in residential, industrial and green spaces of Tehran  Abstract Rapid urbanization in recent decades has been a major driver of ecosystems and environmental degradation, including changes in agricultural land use and forests. Urbanization is rapidly transforming ecosystems into buildings that increase heat storage capacity. Loss of ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004